Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Fabio Teodoro de Souza

Fabio Teodoro de Souza

Pontifical Catholic University of Parana
Brazil

Title: A data mining approach to elucidate the relationships between air pollution and respiratory diseases in big cities

Biography

Biography: Fabio Teodoro de Souza

Abstract

The sustainability of large cities is controlled by consumption, disposal, and environmental capacity. The weather patterns have been affected by the quick growing of the cities. These imbalances imply climate changes and negative consequences to the public health. In addition, due to the explosive growth in carbon dioxide emissions from fossil-fuel usage, researchers emphasize the importance in improving the quantitative control of the global carbon cycle as a central element to understand the patterns and projections of climate change. It is also discussed the importance in attributing observed CO2 variations to human or natural cause. This research focuses on better understanding the relationships between air pollution and respiratory diseases. The methodology consists in applying data mining techniques on hospitalization due to respiratory diseases organized with atmospheric and urban variables. The knowledge acquired from this study - which is still in the early phase of data collection - could be useful for urban management and public health policies. Some qualitative associations between air pollutants in Curitiba and respiratory morbidity of childhood population have been discussed. Curitiba has a metropolitan area with population around 3 million. Some scientists highlighted the necessity of spreading methodological experiences from medium-size cities with relatively stable emissions to the more complex and representative environments of megacities (metropolitan areas with populations greater than 10 million). Moreover, this research should verify if the use of data mining techniques may potentially contribute to explain air pollution associated to the augment of the anthropogenic CO2 signal in urban environments of megacities.

Speaker Presentations

Speaker PDFs

Speaker PPTs Click Here