Mitsuru Osaki
Hokkaido University, Japan
Title: CDEFs securities in high carbon reservoir ecosystem of tropical peatland
Biography
Biography: Mitsuru Osaki
Abstract
The CDEFs security is new concept on estimation and management of High Carbon Reservoir Ecosystem, especially in Tropical Peatland such as;Climate Change security, (bio)Diversity security,Energy security,Food/feed security, and social security.Peatland is typical case, which relate closely with the CDEFs security, because peatland sustains high water table and high carbon reservoir, and high biomass productivity, contributing mitigation and adaptation to Climate Change security, high Bio-Diversity, high Biomass Energy production, high Food/feed production, and social security throughout CDEF security. In past, unfortunately tropical peatland management and development have been misleading against high CDEFs security of tropical peatland.
Lets remind again what is “The Tropical Peatland Principle” (1,2). Tropical Peatland is typical case of wetland, then water is most functional element among other wetland. Especially, high water table, not moisture is most rational principal for peat formation and peat conservation.Because oxygen permeability is a key factor of peat decomposition.Even if peat keep wet condition, O2 permeate until water table of peatland, then peat is decomposed quickly (3).
Internationally, water is most important resource for terrestrial ecosystem. Global Risks 2015 reported "Top 10 risks in terms of global Impact" (4), in which Water crises is ranked as number one. Thus, it is better to change basically national policy on tropical peatland management used as wet-peatland, not dry-peatland. Wet-peatland function as large water reservoir, which is great benefit, rolling as natural capital such as water dam. Natural capital of Wet-peatland as Water Reservoir is inestimable, because especially Wet-peatland securer to supply water in dry season even if El Niño year, which contribute to the national food/feed security, and at same time, to reduction of CO2 emission. In other words, Wet-peatland contribute globally to both mitigation (reduction of CO2 emission) and adaptation (water supply for plant growth in severe dry) against climate change.